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ABSTRACT
Systematic uncertainties that have been subdominant in past large-scale structure (LSS) sur-
veys are likely to exceed statistical uncertainties of current and future LSS data sets, poten-
tially limiting the extraction of cosmological information. Here we present a general frame-
work (PCA marginalization) to consistently incorporate systematic effects into a likelihood
analysis. This technique naturally accounts for degeneracies between nuisance parameters
and can substantially reduce the dimension of the parameterspace that needs to be sampled.
As a practical application, we apply PCA marginalization toaccount for baryonic physics
as an uncertainty in cosmic shear tomography. Specifically,we use CosmoLike to run simu-
lated likelihood analyses on three independent sets of numerical simulations, each covering
a wide range of baryonic scenarios differing in cooling, star formation, and feedback mecha-
nisms. We simulate a Stage III (Dark Energy Survey) and StageIV (Large Synoptic Survey
Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic
physics is not accounted for. We then show that PCA marginalization (employing at most 3
to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to ob-
tain robust, precise constraints on the dark energy equation of state even in the presence of
large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA
marginalization technique is a powerful, general tool for addressing many of the challenges
facing the precision cosmology program.

Key words: cosmology – weak lensing – theory

1 INTRODUCTION

The increased quality and size of data sets from ongoing wide-
field imaging surveys, such as Kilo-Degree Survey (KiDS1), Hy-
per Suprime Cam (HSC2), and Dark Energy Survey (DES3), will
shift the focus of cosmological analyses from the statistical preci-
sion with which a signal is measured to the robustness of the cos-
mological constraints that are derived from the measurements. Our
ability to understand, constrain and model systematics will play a

⋆ E-mail:tim.eifler@jpl.nasa.gov
1 http://www.astro-wise.org/projects/KIDS/
2 http://www.naoj.org/Projects/HSC/HSCProject.html
3 www.darkenergysurvey.org/

key role in removing biases and reducing the error bars on cosmo-
logical parameters; this will be even more crucial for the success of
future ground- and space-based endeavors such as the Large Synop-
tic Survey Telescope (LSST4), Euclid5 and the Wide-Field Infrared
Survey Telescope (WFIRST6).

Cosmological analyses of imaging surveys are affected by a
variety of systematic uncertainties. The most important systemat-
ics for contemporary and next generation (Stage III and IV accord-
ing to Albrecht et al. (2006); Weinberg et al. (2013)) surveys are
photometric redshift errors, shear calibration, galaxy bias, baryonic

4 http://www.lsst.org/lsst
5 sci.esa.int/euclid/
6 http://wfirst.gsfc.nasa.gov/
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2 Eifler et al.

physics, intrinsic alignments, and modeling the non-linear evolu-
tion of the density field. Uncertainties from these sources are gen-
erally expressed through so-callednuisance parametersover which
onemarginalizesin a likelihood analysis. The termnuisance pa-
rameter refers to any parameter in a likelihood analysis except
those one aims to constrain. Many of the aforementioned sources
of systematics are interesting astrophysical phenomena inand of
themselves, and constraining these phenomena will henceforth go
hand in hand with any successful cosmological analysis.

In the literature, the topic of nuisance parameters has been
covered extensively. Most of the work to date has consideredone
or at most two particular systematics, outlining methods toincorpo-
rate them into a likelihood analysis. Prominent examples are Ma,
Hu & Huterer (2006), Bernstein & Huterer (2010), Hearin et al.
(2010) for photo-z uncertainty, Hirata & Seljak (2003) or Huterer,
Keeton & Ma (2005) for shear calibration, Hirata & Seljak (2004)
or Joachimi et al. (2011) for intrinsic alignment, Jing et al. (2006),
Zentner, Rudd & Hu (2008), Semboloni et al. (2011), Zentner et al.
(2013), and Semboloni, Hoekstra & Schaye (2013) for the impact
of baryonic physics (a topic of immediate interest for the present
paper), Zehavi et al. (2011), Cacciato et al. (2012), Krauseet al.
(2013), Zentner, Hearin & van den Bosch (2013), and Reddick
et al. (2014) for galaxy bias/Halo Occupation Distribution mod-
eling. This list is far from complete; defining and constraining nui-
sance parameters is an active research topic.

Some of these parameterizations are physically motivated and
address specific effects (e.g., halo concentration for baryons, red-
shift scaling and power spectrum amplitude for intrinsic alignment,
multiplicative and additive shear bias, etc). In the absence of in-
formation on the functional form of the nuisance parameterization
one must rely on introducing distinct nuisance parameters in bins
of redshift and scale (Bernstein 2009; Joachimi & Bridle 2010), so
as to absorb a variety of possible systematic errors, and rely on the
data to calibrate these nuisance parameters. When carryingout a
combined probes analysis (as in Eifler et al. 2014, for example),
where not one but all of these nuisance parameters must be con-
sidered simultaneously, the shear number of nuisance parameters
challenges the limit of computationally feasibility.

In this paper, we develop aPrincipal Component Analysis
(PCA) marginalizationframework that poses an efficient method to
incorporate many nuisance parameters and many systematic errors
within a likelihood analysis. This framework identifies theprincipal
components (PCs) that capture the impact of nuisance parameters
on the quantity that enters the likelihood analysis (e.g., power spec-
tra, correlation functions, etc.). The marginalization procedure can
then be carried out efficiently in the PC basis.

We apply this framework to a specific example, namely the
impact of various baryonic scenarios on cosmological constraints
from weak lensing tomography. Weak lensing tomography is one of
the core cosmological probes of photometric surveys; independent
of any assumptions about the relationship between dark and lumi-
nous matter, weak lensing tomography provides valuable informa-
tion about the geometry and structure growth of the Universeand
thereby allows us to constrain cosmology (Hoekstra, Yee & Glad-
ders 2002; van Waerbeke, Mellier & Hoekstra 2005; Jarvis et al.
2006; Schrabback et al. 2010; Lin et al. 2012; Heymans et al. 2012;
Huff et al. 2014). In combination with accurate redshift informa-
tion, weak lensing tomography has been identified as one of the
most powerful tools to constrain the dark energy equation ofstate
and thereby reveal the nature of the acceleration of the expansion of
the Universe (Albrecht et al. 2006; Peacock et al. 2006; Weinberg
et al. 2013).

A potentially significant source of systematic error for weak
lensing tomography is theoretical uncertainty in the role of bary-
onic physics in our Universe. Baryonic processes can redistribute
matter within the Universe to a degree that is large enough toinduce
significant systematic errors in cosmological parameters (Zentner,
Rudd & Hu 2008; Hearin & Zentner 2009; Semboloni et al. 2011;
Semboloni, Hoekstra & Schaye 2013; Zentner et al. 2013), yet
the baryonic processes that drive galaxy formation and evolution
remain poorly understood and poorly constrained. Different treat-
ments of baryonic gas cooling, star formation, and feedbackmech-
anisms can dramatically alter the predictions for shear measure-
ments (especially on small angular scales), and this effect intro-
duces an intolerable bias in the cosmological parameter estimation.

In this paper, we examine different baryonic scenarios from 3
independent hydrodynamical simulation efforts: The OWLS (Over-
Whelmingly Large Simulations) project (Schaye et al. 2010;van
Daalen et al. 2011), the simulations used in Rudd, Zentner &
Kravtsov (2008), and a yet unpublished set of Hydro simulations
further described in Sect. 3.1. We simulate a DES and LSST/Euclid
likelihood analysis in a 7-dimensional cosmological parameter
space using the PCA marginalization scheme to take baryonicun-
certainties into account.

2 MARGINALIZATION OF BARYONIC EFFECTS

2.1 Likelihood Analysis Basics

Given a data vectorD we calculate the posterior probability for a
point in the joint parameter space of cosmological parameters pco

and nuisance parameterspnu via Bayes’ theorem

P(pco,pnu|D) ∝ Pr(pco,pnu) L(D|pco,pnu), (1)

wherePr(pco,pnu) denotes the prior probability andL(D|pco,pnu)
is the likelihood. The data vector includes, for example, two-point
functions in the form of power spectra, which depend on both scale
and redshift. The likelihood is often assumed to be Gaussianso that

L(D|pco,pnu) = N × exp
(

−
1
2

[

(D −M)t C−1 (D −M)
]

︸                         ︷︷                         ︸

χ2(pco,pnu)

)

. (2)

We abbreviateM = M(pco,pnu), i.e. the model vectorM is a
function of cosmology and nuisance parameters. The normaliza-
tion constantN = (2π)−

n
2 |C|−

1
2 in Eq. (2) can be neglected under

the assumption that the covariance is constant in parameterspace.
We note that assuming a constant, known covariance matrixC is
an approximation to the correct approach of a cosmology depen-
dent or estimated covariance (see Eifler, Schneider & Hartlap 2009,
for further details). The impact of this assumption on cosmological
constraints is more severe for deep, small surveys and less impor-
tant for wide, shallow surveys.

2.2 Mode Removal - PCA marginalization

Consider an experiment that provides a data vectorD, which in our
case is the set of all auto- and cross-spectraCi j

l of cosmic shear
across redshift bins with indicesi, j. For any set of cosmologi-
cal parameters, dissipationless N-body simulations are sufficient to
produce an accurate prediction for this data vector if dark matter
alone were responsible for the lensing. Let us call this prediction,
M0(pco), where againM is a vector with all auto- and cross-spectra
and the subscript denotes that the prediction is generated assum-
ing the Universe contained only dark matter and no baryons; the

c© 0000 RAS, MNRAS000, 000–000



Accounting for baryonic effects on cosmic shear tomography3

prediction, of course,woulddepend on the set of cosmological pa-
rameterspco.

The true prediction for this set of cosmological parametersin-
cluding the effects of baryons is far more challenging to make. In
principle, such a prediction involves a whole new suite of parame-
ters,pnu, that encode the effects of baryons on large-scale structure.
If it were possible to specify those parameters and easily generate
a prediction for weak lensing power spectra for each parameter set,
then we could calculate the likelihood function for the cosmologi-
cal parameters by marginalizing over the nuisance parameters:

L(D|pco) =
∫

dpnu exp
(

−
1
2

(D−M(pco,pnu))tC−1(D−M(pco,pnu))
)

,

(3)

whereC is the covariance matrix (which we approximate to be
independent of any of the parameters). Several groups have tried
to implement this idea, most successfully by parametrizingbary-
onic effects with severalhalo modelparameters (Zentner, Rudd &
Hu 2008; Semboloni et al. 2011; Zentner et al. 2013; Semboloni,
Hoekstra & Schaye 2013).

We introduce an alternative way to carry out the marginaliza-
tion, which does not require detailed understanding of the under-
lying phenomenology, nor an analytical model associated with the
parameters encoding the effects. Rather, this marginalization is over
the linear combinations of observables that are most strongly influ-
enced by the baryonic effects (or, more generally, by the systematic
of interest). If these modes can be identified, they can easily be in-
tegrated out. So, even without any explicit parametrization of the
underlying physics, one can account for the associated systematic
effects.

To identify the offending modes, we start with a suite of
hydrodynamic simulations, each of which generates a prediction
Mα(pco). The subscriptα refers to the considered numerical sim-
ulation and ranges up to the total number of baryonic scenarios
Nsce, which is of order 15 in in our analysis. There is also a dark
matter only simulation which, as mentioned above, is identified by
α = 0. The components of thedifference matrix∆ between the hy-
drodynamical simulations and the dark matter only simulation are
obtained as

∆kα ≡ Mkα − Mk0, (4)

where the indexk here covers alll for all auto- and cross-spectra
(that is,k runs over all observables). The difference between the
parametric and non-parametric approach is beginning to emerge. In
the parametric approach,∆kα would be a function of the nuisance
parameters; here it is simply a number that captures the uncertain-
ties due to baryonic effects.

Before proceeding to the general procedure we propose here,
consider first a trivial, but instructive example. Suppose that all the
hydro simulations predict that all the spectra are identical to the
DM-only spectrum except at a single value ofCi j

l , so that∆kα = 0
for all α and allk except fork = 1 (so∆kα ∝ δ1α and this first ob-
servable corresponds to, sayC11

l=100). A very simple way to deal with
the systematic would simply be to remove that single measurement.
This is equivalent to settingM(pco,pnu) = M0(pco) + δ1αA, where
A is an arbitrary amplitude, and integrating over all possible values
of A.

In other words, instead of integrating over parameterspnu, we
are integrating over amplitudes of offending modes, where amode
is a linear combination of all theCi j

l (all the observables). In this
simple example, there is only one mode and the coefficients in the
linear combination that define that mode are all zero except for one.

More generally, a given mode will depend on all the elements of the
auto- and cross-spectra, and there could be more than one mode that
is marginalized over.

The only remaining difficulty is to identify the modes that are
most damaging. There are several ways to approach this. Herewe
choose to remove modes that have the largest variance in the sim-
ulations. To identify the modes with the largest variance, we col-
lect the∆α’s from all the simulations into a single matrix∆. To be
concrete, we consider 14 (for DES) and 12 (for LSST/Euclid) sim-
ulations so∆ has 14 (12) columns. We assume five redshift bins so
that the total number of auto- and cross-spectra is 5∗ 6/2 = 15. We
bin so that each spectrum is sampled at 20 values ofl, meaning that
there are a total of 300 data points. So the matrix∆ has 14 (12 for
LSST/Euclid) columns and 300 rows.

The matrix product∆∆t is proportional to the covariance of
the observables among all of the different baryonic simulations (the
Mkα) with respect to the DM-only simulation (Mk0). Identifying the
linear combinations of observables most susceptible to contamina-
tion from baryonic processes amounts to diagonalizing the matrix
∆∆

t and choosing the eigenvectors (which are linear combinations
of observables) with the largest eigenvalues (the largest variances).
The matrix we aim to diagonalize is the product∆∆t and we will
need to project observables onto the eigenvectors of this matrix, so
it is convenient to proceed using the (full) singular value decompo-
sition (SVD) of∆,

∆ = UΣVt . (5)

The PCs of∆ are the columns of the orthogonal matrixU, which
in our example is 300× 300. The mean squared deviations of the
observables from the DM-only predictions are

Cov∆ =
1

Nsce− 1
∆∆

t =
1

Nsce− 1
UΣΣt Ut = U E Ut , (6)

whereE = 1
Nsce−1ΣΣ

t is a diagonal matrix whose (300) entries are
the eigenvalues of Cov∆.

We can project the observables onto the PCs inU. We can then
identify the linear combinations (or “modes”) most susceptible to
baryonic effects as those with the largest entriesEk in E and remove
them from the analysis (equivalent to marginalizing over a free am-
plitude for them). In this way, we simply discard the information
contained within these modes just as we discarded the information
in the observablek = 1 (C11

ℓ=100) in our pedagogical example above.
Proceeding further requires a bit of care, because the mode

must be removed from both the data and the model, so we ex-
plicitly walk through our algorithm. At each point in cosmology
sampled by the MCMC we compute the matrix∆ and obtain the
corresponding projection matrixUt via SVD as in Eq. (5). SinceU
is an orthogonal matrix, which implies1 = UUt = UtU, we rewrite
χ2(pco,pnu) as

χ2(pco,pnu) = (D −M)tUUtC−1UUt(D −M) (7)

We can then insert a projection matrixP = P2 into Eq. (7) to restrict
attention to a subset of the observables, yielding a newχ2(pco,pnu),

χ′2(pco,pnu) = (PUtD − PUtM)t(PUtCUP)−1(PUtD − PUtM) . (8)

If P = 1 we recoverχ′2(pco,pnu) = χ2(pco,pnu) as defined in Eq.
(2); setting some of the diagonal elements inP to zero projects onto
a subspace of the PCs. Below, we experiment with the number of
modes that need to be removed such that the nuisance parameters
need no longer be accounted for explicitly in the model: we will
see that very few are needed in order to eliminate the systematic of
baryonic effects.

c© 0000 RAS, MNRAS000, 000–000
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Table 1. Survey parameters

Survey area [deg2] σǫ ngal zmax zmean zmed

DES 5, 000 0.26 10 2.0 0.84 0.63
LSST/Euclid 15, 000 0.26 31 3.5 1.37 0.93

Before showing our results, we make two general remarks.
First, our choice of which modes to remove is not necessarilythe
optimal choice. Another well-motivated choice would result if one
were to weight the covariance in Eq. (6) with the inverse of the data
covariance matrixC. Returning to our simple example of a single
observable (C11

ℓ=100) comprising a mode, if the noise in a particular
survey at that mode were very large, it would not make sense (or
be necessary) to remove the mode. That is, the large variation of a
mode alone does not guarantee that it will produce parameterbias.
If the mode is not well measured, it is not necessary to removethe
mode. Yet another example would be to choose to remove modes
that most affect the inferred cosmological parameters of interest.
Some modes may exhibit little degeneracy with the parameters of
interest and consequently, removing those modes should be alower
priority.

The second comment is that, while we focus here on the
systematic of baryonic effects on the lensing spectrum, the PCA
marginalization approach can be applied generally to any probe and
any number of systematics. We will address both issues in Sect. 6.

3 UNCERTAINTIES IN BARYONIC PHYSICS

In the following we consider the uncertainties in modeling bary-
onic physics in weak lensing. We examine various baryonic sce-
narios from different sets of simulations and calculate shear to-
mography power spectra for each scenario considering a DES and
a LSST/Euclid like survey (see Table 1 for details). The values
for DES stem from DES documents and internal communication
within the DES collaboration; for LSST/Euclid we rely on spec-
ifications outlined in Chang et al. (2013). Although Chang etal.
(2013) aims at LSST only, Euclid survey parameters are similar
(15000 deg2, 30ngal, according to Laureijs et al. 2011).

The main difference between Euclid and LSST (aside from ob-
servational systematics) is the redshift distribution of source galax-
ies, where Euclid is shallower compared to LSST. It is however
unlikely that this difference qualitatively affects the outcome of the
analysis presented here, hence we believe that the LSST scenario
very well resembles the Euclid survey as well.

3.1 Simulation Set

OWLS simulations From the OWLS project we obtain matter
power spectra for nine different scenarios corresponding to
various hydrodynamical recipes that differ in their treatment
of cooling, SN- and AGN feedback. Please see Table 2 for a
brief summary and Schaye et al. (2010), and van Daalen et al.
(2011) for a detailed description of the implemented physics
and the observations that motivated these recipes. The OWLS
simulations were conducted in cubic simulation volumes with
sides of lengthL = 100h−1Mpc and the simulation power spectra
have been tabulated by van Daalen et al. (2011) and are valid
for wave numbers 0.314 6 k/hMpc−1

6 10. These simulations
were analyzed for a similar application using a different technique

Table 2. Summary of the baryonic physics in the OWLS simulations.

Simulation Description
DM No Baryons, CDM only
REF Chabrier (2003) IMF, Wind mass loadingη = 2,

vw = 600 km s−1

AGN Includes AGN (in addition to SN feedback)
NOSN No SN energy feedback
NOSN NOZCOOL No SN energy feedback and

cooling assumes primordial abundance
NOZCOOL Cooling assumes primordial abundance
WDENS Wind mass loading and velocity depend on

gas density (SN energy as REF)
WML1V848 Wind mass loadingη = 1, velocity

vw = 848 km s−1 (SN energy as REF)
WML4 Wind mass loadingη = 4 (SN energy as REF)
DBLIMFV1618 Top-heavy IMF at high pressure,

extra SN energy in wind velocity

in Zentner et al. (2013) and Semboloni, Hoekstra & Schaye (2013).

Rudd simulations The simulations of Rudd, Zentner & Kravtsov
(2008) track the formation of structure in a cubic volume
60h−1Mpc on a side in a flat,ΛCDM cosmological model with
ΩM = 0.3, ΩBh2 = 0.021, h = 0.7, andσ8 = 0.9. The simu-
lation set consists of three simulations all starting from the same
initial conditions. The first simulation (labeled “DMO” in Rudd,
Zentner & Kravtsov 2008) is purely dissipationless and includes a
collisionless dark matter component only. The second simulation
(labeled “DMONR”) follows both dark matter and baryons. How-
ever, the baryonic component is not permitted to cool radiatively in
DMG NR. The baryonic component in DMGNR is treated in the
non-radiative (or “adiabatic”) regime and neither stars nor galax-
ies form in DMGNR. The third simulation (labeled “DMGSF”)
treats the baryonic component including radiative coolingand heat-
ing, star formation, and feedback from supernovae. The inclusion
of these processes in DMGSF allows for the formation of galax-
ies in the DMGSF simulation. The cool gas forms a condensed
component, a fraction of which is converted into stars according
to a relatively standard, observationally-motivated starformation
recipe.

The dissipationless DMO simulation is performed using the
Adaptive Refinement Tree (ART) N-body code (Kravtsov, Klypin
& Khokhlov 1997; Kravtsov 1999). In the DMGNR and DMGSF
simulations, the gaseous baryonic component is simulated using
using an Eulerian hydrodynamics solver on the same adaptive
mesh of the N-body ART code using the techniques described by
Kravtsov, Klypin & Hoffman (2002). However, the two simula-
tions that included baryons are performed with the new, distributed-
memory version of the N-body+gas dynamics ART code.

A common problem in studies of this kind is that simulations
that resolve galaxy formation necessarily model fairly small vol-
umes. The Rudd et al. simulations are among the smaller simula-
tions (computational cube with a side length of 60h−1Mpc) used
for these purposes. Consequently, cosmic variance and finite vol-
ume effects are significant at scales ofk . 0.11hMpc−1.

Gnedin simulations7 Four new sets of simulations are performed
with the Adaptive Refinement Tree (ART) code (the same code

7 publicly available at http://astro.uchicago.edu/∼gnedin/WL/
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Figure 1. The assumed redshift distribution with 5 tomography bins for
DES (top) and LSST/Euclid (bottom).

used for Rudd simulations). Each set includes 3 different ran-
dom realizations with different values for the DC mode (Gnedin,
Kravtsov & Rudd 2011) of a 200h−1 comoving Mpc box with 5123

dark matter particles and a factor of several larger number of adap-
tively refined cells (which are dynamically created and destroyed
in the course of the simulation to maintain required spatialresolu-
tion). Spatial resolution (the size of the most refined cells) of all
simulations is set to 3h−1 comoving kpc. The first set of simula-
tions is dissipationless and treats dark matter only. The second set
(AD) includes only ”adiabatic” (i.e. non-radiative) hydrodynamic
processes. The third set (CW) includes radiative cooling (but no
radiative heating) with primordial abundances of hydrogenand he-
lium. The fourth set (CX) includes radiative cooling with the cool-
ing function that corresponds to solar-metallicity gas; that cooling
function is applied to all gas in the simulation, even to the deep-
est voids, and, hence, is physically unrealistic. The CX setshould,
therefore, be considered as an extreme limit of gas cooling.

3.2 Projected shear power spectra from the baryonic
scenarios

The three sets of simulations described in Sect. 3.1 have different
input cosmologies. In order to create a coherent set of baryonic sce-
narios we assume that the cosmology dependence enters through
the dark matter power spectrum only and “re-normalize” the 3D
density power spectra for each baryonic scenario via

Pbary,theory
δ (k, z) =

Pbary,sim
δ

(k, z)

PDM,sim
δ

(k, z)
PDM,theory
δ (k, z) (9)

wherePbary,sim
δ

(k, z) denotes the joint dark+baryonic power spec-
trum from a given simulation,PDM,sim

δ is the corresponding dark
matter only power spectrum, andPDM,theory

δ
is the dark matter power

spectrum calculated from CosmoLike (see Sect. 4.1 for details) as-
suming a Planck+WMAP polarization best-fit cosmology.

In each case, the simulations treat finite volumes and have

2e
−

06
1e

−
05

5e
−

05
2e

−
04

DM Planck

DES

500 1000 2000 5000

5e
−

06
2e

−
05

1e
−

04

DM Planck

LSST/Euclid

l(l
+

1)
/2

π 
C

(l)
 

l(l
+

1)
/2

π 
C

(l)

l

Figure 2. The shear tomography power spectra for the five auto z-bins com-
puted at the fiducial cosmological model. The black line corresponds to the
dark matter scenario, the shaded area spans the range of uncertainty from
baryonic physics.
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Figure 3. The ratio of shear tomography power spectra of different baryonic
scenarios with respect to the dark matter only scenario for the lowest auto-
correlation tomography bin.

limited resolutions, so the simulated spectra alone do not suffice
to cover the entire range of wave numbers needed. As such, it is
necessary to extrapolate simulation results using a particular the-
oretical model. The Rudd et al. (2008) simulations pose the most
stringent constraints on the range ofk andz, i.e. matter power spec-
tra are accurate over a range ofk ∈ [0.3; 10]hMpc−1, where the
lower k-limit is a consequence of simulation size, and over a range
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of z ∈ [0.0; 2.0]. Outside thek-ranges we extrapolatePδ with a the-
oretical power spectrum (see below); however, note that thelimited
redshift range of the Rudd et al. simulations prohibits us from com-
puting LSST shear power spectra because the LSST redshift range
extends toz = 3.5. Overall this give us 14 baryonic scenarios for
the DES survey and 12 for LSST.

Having obtained the density power spectra we calculate the
shear power spectra as

Ci j (l) =
9H4

0Ω
2
m

4c4

∫ χh

0
dχ

gi (χ)gj (χ)
a2(χ)

Pδ

(

l
fK(χ)

, χ

)

, (10)

with l being the 2D wave vector perpendicular to the line of sight,
χ denoting the comoving coordinate,χh is the comoving coordi-
nate of the horizon,a(χ) is the scale factor, andfK(χ) the comoving
angular diameter distance (throughout set toχ since we assume a
flat Universe). The lens efficiencygi is defined as an integral over
the redshift distribution of source galaxiesn(χ(z)) in the i th tomo-
graphic interval

gi(χ) =
∫ χh

χ

dχ′ni (χ′)
fK (χ′ − χ)

fK (χ′)
. (11)

In this analysis we use two different redshift distributions
mimicking a DES and and LSST/Euclid like survey and divide each
redshift range into five bins (see Fig. 1 and Table 1). For LSSTwe
adopt the redshift distribution suggested in Chang et al. (2013) and
the DES redshift distribution is modeled by a modified CFHTLS
redshift distribution (see Benjamin et al. 2007, adjusted for the
slightly lower mean redshift of DES). The exact parameterization
for the latter reads

n(z) = N

(

z
z0

)α

exp



−

(

z
z0

)β
 , (12)

with α = 2.0, β = 1.0, z0 = 0.5.
Since we chose five tomographic bins, the resulting data vec-

tor which enters the likelihood analysis consists of 15 tomographic
shear power spectra, each with 20 logarithmically spaced bins
(l ∈ [30; 5000]), hence 300 data points overall. The limits of the
tomographicz-bins are chosen such that each bin contains a similar
number of galaxies.

In Fig. 2 we show the uncertainty range spanned by the bary-
onic scenarios (grey shaded area) with respect to the DM onlysce-
nario (black line) for the 5 auto-correlation redshift shear power
spectra. In Fig. 3 we further show the ratio of baryonic to dark mat-
ter C11(l) shear power spectrum for a subset of the scenarios. One
can clearly see that at differentl the range is bracketed by different
scenarios, with the strong AGN-feedback scenario being thelower
extreme starting froml ∼ 400 and the extreme cooling scenario
(CX) being upper limit forl > 2000.

4 LIKELIHOOD ANALYSIS: NEGLECTING BARYONS

We first carry out likelihood analyses with shear tomographypower
spectra from the various baryonic scenarios as the input data vec-
tors without accounting for baryons, i.e. using the DM powerspec-
trum in the model vector only.

4.1 Modeling Cosmological Quantities

Shear tomography power spectra All simulated likelihood anal-
yses in this paper are computed using the weak lensing modules
of CosmoLike (see Eifler et al. 2014, for an early version; offi-
cial release paper is Krause et al. 2014 in prep). We compute the
linear power spectrum using the Eisenstein & Hu (1999) transfer
function and model the non-linear evolution of the density field as
described in Takahashi et al. (2012). Time-dependent dark energy
models (w = w0 + (1− a) wa) are incorporated following the recipe
of icosmo (Refregier et al. 2011), which in the non-linear regime in-
terpolates Halofit between flat and open cosmological models(also
see Schrabback et al. 2010, for more details). From the density
power spectrum we compute the shear power spectrum as described
in Sect. 3.2.

Shear covariances Under the assumption that the 4pt-function of
the shear field can be expressed in terms of 2pt-functions (so-called
Gaussian shear field) the covariance of projected shear power spec-
tra can be calculated as in (Hu & Jain 2004)

CovG

(

Ci j (l1)Ckl(l2)
)

= 〈∆Ci j (l1)∆Ckl(l2)〉 =
δl1l2

2 fskyl1∆l1

[

C̄ik(l1)C̄ jl (l1) + C̄il (l1)C̄ jk(l1)
]

, (13)

with

C̄i j (l1) = Ci j (l1) + δi j
σ2
ǫ

ni
, (14)

where the superscripts indicate the redshift bin;ni is the density of
source galaxies in thei-th redshift bin; andσǫ is the RMS of the
shape noise.

Since non-linear structure growth at late time induces signif-
icant non-Gaussianities in the shear field, using the covariance of

Eq. (13) in a likelihood analysis results in underestimatesof the er-
rors on cosmological parameters. Therefore, the covariance must be
amended by an additional term, i.e. Cov= CovG+CovNG. The non-
Gaussian covariance is calculated from the convergence trispec-
trumTκ (Cooray & Hu 2001; Takada & Jain 2009), and we include
a sample variance termTκ,HSV that describes scatter in power spec-
trum measurements due to large scale density modes (Takada &
Bridle 2007; Sato et al. 2009),

CovNG(Ci j (l1),C
kl(l2)) =

∫

|l|∈l1

d2l
A(l1)

∫

|l′ |∈l2

d2l′

A(l2)

[

1
Ωs

T i jkl
κ,0 (l,−l, l′,−l′) + T i jkl

κ,HSV(l,−l, l′,−l′)
]

, (15)
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Table 3. Fiducial cosmology, minimum and maximum of the flat prior on cosmological parameters, and Planck prior information usedin the analysis.

Ωm σ8 ns w0 wa Ωb h0

Fiducial 0.315 0.829 0.9603 -1.0 0.0 0.049 0.673
Min 0.1 0.6 0.85 -2.0 -2.5 0.04 0.6
Max 0.6 0.95 1.06 0.0 2.5 0.055 0.76
Planck+WP 1-σ +0.016

−0.018 ±0.012 ±0.0073 - - ±0.00062 ±0.012
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Figure 4. Cosmological constraints for a DES survey assuming different underlying baryonic scenarios for our Universe, i.e.pure dark matter (black/solid),
strong AGN feedback (red/dashed), extreme cooling (blue/dot-dashed), and moderate cooling (green/long-dashed), which are unaccounted for in the likelihood
analysis. The scenarios are detailed in Sect. 3.1. The characters “np” labeling each model indicate that the analysis isperformed with no priors on the
parameters.

with A(l i) =
∫

|l|∈l i
d2l ≈ 2πl i∆l i the integration area associated

with a power spectrum bin centered atl i and width∆l i .
The convergence trispectrumT i jkl

κ,0 is, in the absence of finite
volume effects, defined as

T i jkl
κ,0 (l1, l2, l3, l4) =

(

3
2

H2
0

c2
Ωm

)4 ∫ χh

0
dχ

(

χ

a(χ)

)4

gigjgkgl × χ−6 Tδ,0

(

l1
χ
,

l2
χ
,

l3
χ
,

l4
χ
, z(χ)

)

, (16)

with Tδ,0 the matter trispectrum (again, not including finite
volume effects), and where we abbreviatedgi = gi(χ).

We model the matter trispectrum using the halo model (Sel-

jak 2000; Cooray & Sheth 2002), which assumes that all matteris
bound in virialized structures that are modeled as biased tracers of
the density field. Within this model the statistics of the density field
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Figure 5. Cosmological constraints for a LSST/Euclid survey assuming different underlying baryonic scenarios for our Universe, i.e.pure dark matter
(black/solid), strong AGN feedback (red/dashed), extreme cooling (blue/dot-dashed), and moderate cooling (green/long-dashed), which are unaccounted for
in the likelihood analysis. The scenarios are detailed in Sect. 3.1.

can be described by the dark matter distribution within halos on
small scales, and is dominated by the clustering propertiesof halos
and their abundance on large scales. In this model, the trispectrum
splits into five terms describing the 4-point correlation within one
halo (theone-haloterm T1h), between 2 to 4 halos (two-, three-,
four-halo term), and a so-called halo sample variance termTHSV,
caused by fluctuations in the number of massive halos within the
survey area,

T = T0 + THSV = [T1h + T2h + T3h + T4h] + THSV . (17)

The two-haloterm is split into two parts, representing correlations
between two or three points in the first halo and two or one point in
the second halo. As halos are the building blocks of the density field
in the halo approach, we need to choose models for their internal
structure, abundance and clustering in order to build a model for
the trispectrum.

Our implementation of the one-, two- and four-halo term con-
tributions to the matter trispectrum follows Cooray & Hu (2001),
and we neglect the three-halo term as it is subdominant com-
pared to the other terms at the scales of interest for this analy-
sis. Specifically, we assume NFW halo profiles (Navarro, Frenk &
White 1997) with the Bhattacharya et al. (2011) fitting formula for
the halo mass–concentration relationc(M, z), and the Tinker et al.
(2010) fit functions for the halo mass functiondn

dM and linear halo
biasb(M) (all evaluated at∆ = 200), neglecting terms involving
higher order halo biasing.

Within the halo model framework, the halo sample variance
term is described by the change of the number of massive halos
within the survey area due to survey-scale density modes; following
Sato et al. (2009) it is calculated as
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T i jkl
κ,HSV(l1,−l1, l2,−l2) =

(

3
2

H2
0

c2
Ωm

)4

×

∫ χh

0
dχ

(

d2V
dχdΩ

)2 (

χ

a(χ)

)4

gigjgkgl

×

∫

dM
dn
dM

b(M)

(

M
ρ̄

)2

|ũ(l1/χ, c(M, z(χ))|2

×

∫

dM′
dn

dM′
b(M′)

(

M′

ρ̄

)2

|ũ(l2/χ, c(M′, z(χ))|2

×

∫ ∞

0

kdk
2π

Plin
δ (k, z(χ))|W̃(kχΘs)|

2 . (18)

4.2 Likelihood Analysis without PCA mitigation of baryons

We have introduced the mathematical basics of likelihood analy-
ses in Sect. 2.2 and the CosmoLike internal calculation of our data
vectors, model vectors, and covariances in Sect. 3.2 and Sect. 4.1.
CosmoLike samples the parameter space using a parallel MCMC
of Goodman & Weare (2010) algorithm implemented through the
python emcee package8 (Foreman-Mackey et al. 2013). Altogether
we present results of 52 simulated likelihood analyses in this paper;
each analysis consists of 108,000 MCMC steps (after discarding
12000 steps as burn-in phase) in a seven dimensional cosmological
parameter space with flat priors at the boundaries of the parameter
range (see Table 3). We check for convergence by running several
shorter chains for all scenarios and ten chains with 480000 MCMC
steps and find no qualitative change in the contours.

We have analyzed all baryonic scenarios described in Sect.
3.1, but confine our detailed results to two extreme scenarios (AGN,
CX) and two moderate scenarios (AD, CW). We run analyses for a
DES and LSST/Euclid survey without prior information (except for
the flat priors at the limits of our parameter space); resultsfor the
same analysis with prior information from the Planck mission can
be found in Appendix A. All contour plots are marginalized over
five cosmological parameters; in addition to the ones mentioned in
the plots we marginalize overΩb andH0. The first row of all fig-
ures with contour plots show the posterior probability distribution
of a given cosmological parameter marginalized over the other six
cosmological parameters.

Figures 4 and 5 compare the impact of strong AGN feed-
back (AGN, dashed red), extreme cooling (CX,dashed-dotted
blue), moderate cooling (CW,long-dashed green), to the DM sce-
nario (black solid) for DES and LSST/Euclid, respectively9. When
baryons are not accounted for, the parameter estimates are severely
biased. We quantify these biases by showing the marginalized 1D
best-fit cosmological parameters and their 1-σ error bars in Tables
5 and 6 (see rows with PCA order= 0).

Note the extremely large biases in Fig. 5. For example, the best
fit value ofw0 if the baryons behaved as in the CX scenario would
be−0.316, differing from the “true” value ofw = −1 by 0.684, or
almost 6-σ. This effect is even more significant for the AGN sce-
nario. As a side-note we point out that quoting a bias as multiples of
σ assumes the posterior probability to be Gaussian, which is done
implicitly in all Fisher analyses of previous papers. Looking at the
1D posterior probabilities in Figs. 4, 5, A1, A4, this is hardly jus-
tified; all posteriors show a substantial skewness or kurtosis. As a

8 http://dan.iel.fm/emcee/current/user/pt/
9 All contours shown in this paper indicate the 68% confidence regions.

consequence a quantitative comparison to previous, similar analy-
ses that are based on Fisher matrices is not meaningful.

In any case, Fisher matrix or MCMC, it has become clear that
neglecting the effects of baryons would lead to a catastrophic mis-
interpretation of the data and a mitigation strategy is essential for
Stage IV surveys. Given the significantly larger statistical error bars
expected in DES, the resulting bias in Fig. 4 is less severe than for
the LSST case, nevertheless, even for DES a mitigation scheme for
baryons is necessary.

5 PCA MARGINALIZATION OVER BARYONIC
UNCERTAINTIES

5.1 Identifying the Principal Components

Recall that the PCA marginalization scheme as outlined in Sect.
2.2 starts with creating a set of model vectors at each point in cos-
mology that spans the variation under nuisance parameters.This
ideal case corresponds to having a representative set of simulated
baryonic scenarios at each point in cosmology, which unfortunately
is computationally unfeasible. Here we rely on the approximation
we already detailed in Sect. 3.2, namely that the cosmology enters
through the dark matter power spectrum only.

Following Eqs. (9, 10), we compute the baryonic shear power
spectrum at any given cosmologypco from the set of baryonic shear
power spectra we computed in Sect. 3.2 for the fiducial cosmology
pfid

co as

Ci j
bary(l,pco) =

Ci j
bary(l,p

fid
co)

Ci j
DM(l,pfid

co)
Ci j

DM(l,pco) (19)

whereCi j
DM(l,pco) is computed from CosmoLike.

For each point in parameter space sampled in the MCMC, we
use Eq. (19) to compute 14 (12) baryonic shear power spectra for
DES (LSST/Euclid). We concatenate the shear power spectra to a
300× 14 (300× 12 for LSST/Euclid) matrix, which defines the set
of model vectorsMα that is assumed to span the uncertainty due
to baryons. We can now define the difference matrix∆ as in Eq.
(4) and perform a (full) SVD on this matrix using Eq. (5), which
gives the transformation matrixU, with the principal components
as columns. One at a time, we remove the PCs with the largest
singular values.

This gives us the necessary ingredients to continue with the
procedure outlined in Sect. 2.2. Figure 6 shows the envelopeof
the different baryonic simulations for three different auto-redshift
power spectra (corresponding to the three rows), and each column
depicts the result of removing more modes. The first column shows
the uncertainties from baryonic physics if no modes were removed.
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Figure 6. This plot shows the uncertainty range spanned by the baryonic scenarios, centralized around the DM scenario, when excluding one (second panel) two
(third panel), and four (fourth panel) PCs compared to the original uncertainty range (left panel). The three panel rows show three tomographic autocorrelation
power spectra for LSST/Euclid.

Table 4. Projection angle of the difference vectors (Ci j
bary(l) − Ci j

DM(l)) onto the PCs (see Eq. 20) and fraction of this difference vector that is captured by the
PC subspace (see Eq. 21).

DES LSST
Baryonic Scenario | cosθ1| V1 | cosθ2| V2 | cosθ3| V3 | cosθ4| V4 | cosθ1| V1 | cosθ2| V2 | cosθ3| V3 | cosθ4| V4

AGN 0.98 0.98 0.17 1 0.002 1 0.0097 1 0.95 0.95 0.31 1 0.026 1 0.00056 1
NOSN 0.87 0.87 0.47 0.99 0.11 1 0.047 1 0.97 0.97 0.1 0.98 0.052 0.98 0.21 1
NOSN NOZCOOL 0.88 0.88 0.46 1 0.087 1 0.04 1 0.96 0.96 0.18 0.98 0.06 0.98 0.18 1
NOZCOOL 0.43 0.43 0.86 0.96 0.001 0.96 0.27 1 0.99 0.99 0.085 0.99 0.078 1 0.051 1
REF 0.63 0.63 0.77 1 0.09 1 0.03 1 0.99 0.99 0.097 1 0.05 1 0.048 1
WDENS 0.99 0.99 0.12 1 0.018 1 0.024 1 0.88 0.88 0.44 0.99 0.14 1 0.0074 1
DBLIMFV1618 0.99 0.99 0.13 1 0.003 1 0.0065 1 0.95 0.95 0.31 1 0.031 1 0.0058 1
WML4 0.61 0.61 0.78 0.99 0.05 0.99 0.14 1 0.99 0.99 0.069 1 0.06 1 0.037 1
WML1V848 0.98 0.98 0.21 1 0.012 1 0.025 1 0.97 0.97 0.26 1 0.025 1 0.005 1
AD 0.98 0.98 0.21 1 0.056 1 0.013 1 0.3 0.3 0.95 0.99 0.002 0.99 0.086 1
CX 0.76 0.76 0.64 1 0.015 1 0.00035 1 0.99 0.99 0.16 1 0.0015 1 0.00077 1
CW 0.97 0.97 0.23 1 0.014 1 0.0078 1 0.87 0.87 0.49 1 0.03 1 0.031 1
A 1 1 0.079 1 0.036 1 0.026 1 – – – – – – – –
CSF 0.98 0.98 0.2 1 0.032 1 0.006 1 – – – – – – – –

The second column shows that even by removing only a single
mode, we are able to reduce the baryonic uncertainties by a signif-
icant amount. Removing 4 modes seems to remove any lingering
ambiguity associated with the baryons. This is a striking result: by
throwing away only less than 2% of the data (4 modes out of 300),
we have created a “baryon-free” subset that can be analyzed with
the dark matter power spectrum.

In addition to the analysis in Fig. 6 we determine the number
of PCs by examining the projections of difference vectors∆α onto
the PC subspaces. Recall that for each baryonic scenarioα we cal-
culate a difference vector∆α. We can project each of these vectors
onto the subspace spanned by the PC modes that are removed. In
particular we compute the absolute value of the cosine of thepro-

jection angle

cosθαi =
∆α · PCi

|∆α||PCi|
, (20)

between theα-th difference vector andi-th PC. The corresponding
PC captures all baryonic uncertainty of scenarioα if | cosθαi | = 1
and none if| cosθαi | = 0. When removingn PCs we can define the
fraction of the difference vector that falls into the space spanned by
the PCs as

Vn =

√√
n∑

i

cos2 θαi . (21)

Table 4 showθαi andVn for all the simulations. Even removing two
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modes seems almost sufficient to remove the differences caused by
baryonic effects. This analysis shows impressively that the baryonic
scenarios for both DES and LSST/Euclid are almost completely
captured within PCA subspaces of relatively low dimensionality;
when using a four-dimensional PC space the worst scenarios is still
to 99.5% per cent within the PCA-volume.

5.2 Results of the likelihood analyses

From Fig. 6 and Table 4 we expect that removing three or four PCs
is sufficient to remove any bias from baryonic physics. We now test
this by running the likelihood analyses with differing numbers of
modes removed.

It is important to note that all likelihood analyses with PCA
marginalization are blind to the baryonic scenario that serves as
input data vector. More precisely, this means that weexclude the
data vector’s baryonic scenario from the matrix∆ in order not to
have an unfair advantage over reality.

Figures 7 and 9 show the results of the likelihood analyses
after removing zero (red, dashed), three (blue, dot-dashed), and
four (green, long-dashed) modes for a DES and LSST/Euclid like
survey, respectively. In comparison we show a pure DM input sce-
nario analyzed with a DM prediction code (black, solid). All con-
tour plots are marginalized over five cosmological parameters; in
addition to the ones mentioned in the plots we marginalize overΩb

and H0. The first row of Figs. 7 and 9 show the posterior proba-
bility distribution of a given cosmological parameter marginalized
over the other 6 cosmological parameters. In each case, the “data”
is taken to be the spectra from the AGN simulation, which – as de-
picted in Figs. 4 and 5 and by the red dashed curves – led to the
largest biases if baryons were not accounted for. The LSST/Euclid
plot shows that, after removing 3 or 4 modes, the bias vanishes.

One typically expects that a mitigation scheme that removes
the bias will loosen constraints (e.g., adding extra nuisance param-
eters to capture the effects of the systematic will inevitably degrade
the marginalized constraints on the cosmological parameters). In
our mitigation scheme, we are removing some of the data so we
similarly expect some degradation in the constraints. Figures 7 and
9 show that this degradation is minimal, affecting only the spectral
index ns. Again, this is an exciting result: the mitigation scheme
can be used with little cost to the overall extraction. It is perhaps
not surprising that the one parameter that is affected,ns, is the one
that requires information from both large and small scales.By re-
moving some of the small scale information, we are necessarily
losing information aboutns.

We can quantify the extent to which the bias is removed and
the amount by which the allowed region in parameter space is
broadened by the mitigation scheme. If there were only one pa-
rameter, this would be straightforward: simply report the difference
between the best value of the parameter emerging from the like-
lihood analysis and the “true” value used to generate the spectra.
This would be the bias, and it would be compared to the statis-
tical uncertainty emerging from the likelihood analysis. Bias sig-
nificantly smaller than this uncertainty would be fine, whileone
larger would be a problem. That is, the relevant quantity would be
(pbest fit − pfid)2/σ2. Under the assumption that this∆χ2 is drawn
from a chi squared distribution, a value larger than one would indi-
cate a problem at 68%; larger than 4 at 95%; and larger than 9 at
99.7%.

For our seven parameter case, we generalize to

∆χ2 = (pfid
co − pbary,best fit

co )t C−1
pco

(pfid
co − pbary,best fit

co ), (22)

where the covariance matrix is determined via

Ci j
pco =

1
N − 1

N∑

k=0

(

〈pi
co〉 − pik

co

) (

〈p j
co〉 − p jk

co

)

(23)

with 〈pi
co〉 indicating the mean of thei-th cosmological parame-

ter (i, j ∈ [1,7]), andk ∈ [1,N] being the index running over all
steps in the MCMC chain. Again assuming this is distributed in the
seven-dimensional cosmological parameter space as aχ2 distribu-
tion with seven degrees of freedom, we find the critical∆χ2 values
that correspond to 68%, 95%, and 99% confidence regions are 8.14,
14.07, and 18.48, respectively.

In Tables 5 and 6 (also see Figs. 8 and 10 ), we show the best
fit values of the individual parameters with the marginalized error
bars and the∆χ2 as defined in Eq. (22). This analysis illustrates the
severe biases in cosmological constraints for DES if the extreme
baryonic scenarios are analyzed. For example, when analyzing the
AGN feedback scenario the probability of the fiducial cosmology
is outside theα = 99.9999998% confidence interval. For scenarios
that only slightly differ from a pure DM Universe, such as the adia-
batic (AD) scenario the bias is substantially less severe (within the
68% region) but still noteworthy.

As expected the impact of baryonic physics is more important
for Stage IV surveys. For example, the analysis of the AD scenario
for an LSST/Euclid-like experiment rejects the fiducial cosmology
more strongly (outside theα = 99.9999999% confidence interval)
than the AGN scenario does for DES. When analyzing the AGN
scenario for a LSST/Euclid survey, the fiducial cosmology is out-
side theα = exp(−5 × 10−27) (a number that is considered 1 by
almost any calculator) interval.

Focusing on the LSST/Euclid case, we see that - in accord
with the 2D projections shown in the figures - the biases are ex-
tremely large for all baryonic scenarios if no mitigation scheme is
used. As more modes are removed, the fits get significantly better,
e.g.,∆χ2 drops from 55.8 to 1.58 and 2.27 for the AD scenario
when removing 3 and 4 PCs, respectively. For the AGN scenario
we find a similar behavior for∆χ2, i.e. it drops from 142 to 3.55,
4.85 when removing 3 and 4 PCs, respectively. For all considered
scenarios the bias is well within the 1-σ error bars, hence we con-
clude that the mitigation scheme effectively removes the baryonic
bias even for Stage IV surveys such as LSST and Euclid. This isin
distinct contrast to phenomenological models, such as those stud-
ied in Zentner et al. (2013) and Semboloni, Hoekstra & Schaye
(2013), which are adequate for Stage III surveys such as DES,but
leave significant systematic error in the inferred cosmological pa-
rameters from Stage IV experiments.

In Appendix A, we rerun all likelihood analyses described in
this section and in Sect. 4 but include prior information from the
Planck mission. Figures to compare are Figs. 4 and 5 to Figs. A1
and A4 for the impact of baryonic physics on constraints without
any mitigation and Figs. 7 and 9 to Figs. A2 and A5 for the likeli-
hood analyses with PCA marginalization. We also repeat the anal-
yses of Tables 5, 6 and Figs 8, 10, which are mirrored in TablesA1,
A2 and Figs. A3, A6, respectively.

The inclusion of Planck information (which in our implemen-
tation does not act onw0, wa) mitigates the magnitude of the bias
from the cosmic shear tomography analysis; however, it alsosub-
stantially reduces the statistical errors on cosmologicalparameters,
and this places stronger demands on the performance of any mit-
igation scheme. Qualitatively, the results with and without Planck
information are similar: First, we find significant biases incosmo-
logical constraints if baryonic physics is not accounted for; the bi-
ases are severe for DES and catastrophic for LSST/Euclid. Second,
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Figure 7. Cosmological constraints for a DES survey when using the PCAmitigation technique. The results shown assume that the baryonic physics of the
Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashedandgreen/long-dashed,
respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).

PCA marginalization is able to remove these biases efficiently. One
major difference between both analyses is that the information loss
on ns is insignificant when including Planck information. In this
case, the Planck prior determines the constraint onns entirely.

5.3 Degeneracy with cosmological parameters

As shown in Figs. 7-10 the PCA removal technique substantially
reduces the information on the spectral indexns indicating a strong
degeneracy of baryonic scenarios and this particular cosmological
parameter. In order to investigate this degeneracy furtherwe per-
form a similar analysis as in Table 4 but replacing the∆α in Eqs.
(20, 21) with the difference of dark matter data vectors that vary in
their underlying cosmology (see Tables 7 and 8).

Specifically, we compute the difference vectors between the
DM fiducial model and the 68% intervals for each of the seven
cosmological parameters considered in our likelihood analysis. A
second difference to the analysis in Table 4 is the inclusion of the
covariance matrix of theCi j (l) when deriving the PCs. As we will
further outline in Sect. 6 (see Eq. 25) this accounts for correlation
and different error bars on the individualCi j (l).

A sufficient but not a necessary condition for the removal of
the information onns would beV4 ∼ 1, which however is not re-
flected in Tables 7 (DES) and 8 (LSST/Euclid). Whereas for the
DES case one might argue thatV4 of ns has the largest value
of all cosmological parameters the other values are too close to
draw any conclusions from this analysis. Especially since for the
LSST/Euclid analysis we find that the volume ofΩm andσ8 is more
prominently mapped onto the PC-space thanns.

Our explanation for this is thatns is only degenerate with the
PCs if additional cosmological parameters are at least allowed to
vary slightly as well. We motivate this statement as follows: Sup-
posens were the only parameter of interest. Under variation ofns

the power spectrum gets tilted, hence the difference vector has con-
tributions from small and large scales. However, baryonic scenarios
only act on small scales, hence when all other parameters, the re-
moval of baryons will not void the information onnS. Given some
freedom in especiallyΩm, σ8, andw0, the spectral indexns can in-
deed account for the tilts that are seen in most baryonic scenarios.
We have examined some combinations of the aforementioned pa-
rameters, finding indeed thatV4 for ns strongly increases already
when giving only little freedom toσ8 andΩm. We however post-
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Table 5. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
DES survey (no priors). The last column contains the∆χ2 distance (see Eq. 22) between best fit and fiducial parameter point.

Scenario PCA order Ωm σ8 ns w0 wa Ωb h0 ∆χ2

DM 0 0.311+0.0363
−0.0373 0.83+0.0328

−0.0324 0.964+0.0333
−0.0334 -1.06+0.438

−0.448 -0.184+1.36
−1.37 0.0474+0.00516

−0.00517 0.691+0.0786
−0.0763 0.675

AD 0 0.299+0.0351
−0.0346 0.849+0.0332

−0.0324 0.932+0.0348
−0.0353 -1.05+0.438

−0.426 0.106+1.38
−1.37 0.0475+0.005

−0.00502 0.735+0.0827
−0.0795 3.57

AD 3 0.317+0.0238
−0.0234 0.818+0.0416

−0.04 0.941+0.0752
−0.0724 -1.03+0.352

−0.355 -0.234+1.39
−1.41 0.0476+0.00506

−0.00495 0.682+0.0722
−0.0717 0.574

AD 4 0.311+0.0257
−0.0245 0.832+0.0568

−0.0556 0.951+0.0705
−0.0696 -1.07+0.356

−0.366 0.0698+1.38
−1.4 0.0473+0.005

−0.00484 0.685+0.0795
−0.076 0.784

AGN 0 0.268+0.0228
−0.0224 0.858+0.0326

−0.0324 0.86+0.0131
−0.0157 -1.3+0.302

−0.306 0.579+1.27
−1.31 0.0463+0.00497

−0.00468 0.797+0.074
−0.0753 55.5

AGN 3 0.316+0.0225
−0.0225 0.827+0.0467

−0.0453 0.944+0.0717
−0.0703 -0.996+0.378

−0.386 -0.12+1.28
−1.24 0.0474+0.00495

−0.00499 0.686+0.0729
−0.0764 0.702

AGN 4 0.315+0.0272
−0.027 0.833+0.0584

−0.0557 0.955+0.0696
−0.0713 -1+0.378

−0.374 -0.0381+1.33
−1.37 0.0481+0.00494

−0.00533 0.684+0.0803
−0.0797 0.599

CW 0 0.332+0.0363
−0.0366 0.799+0.0298

−0.0297 1.02+0.0273
−0.0272 -1.07+0.413

−0.438 -0.579+1.33
−1.34 0.0477+0.00501

−0.00508 0.61+0.0668
−0.067 13

CW 3 0.317+0.0224
−0.0212 0.822+0.0379

−0.0353 0.951+0.0731
−0.0746 -1.03+0.353

−0.351 -0.0789+1.31
−1.33 0.0478+0.00497

−0.00516 0.675+0.0697
−0.0712 0.421

CW 4 0.316+0.0243
−0.0234 0.826+0.0535

−0.0512 0.956+0.0699
−0.0739 -1.02+0.372

−0.363 -0.107+1.36
−1.4 0.0472+0.00501

−0.00495 0.674+0.0808
−0.0786 0.601

CX 0 0.364+0.0413
−0.0415 0.749+0.028

−0.0284 1.03+0.0247
−0.0255 -1.13+0.425

−0.44 -1+1.26
−1.16 0.0477+0.00509

−0.00514 0.551+0.0629
−0.0631 32.7

CX 3 0.315+0.0229
−0.0228 0.816+0.0401

−0.0389 0.947+0.0713
−0.0726 -1.1+0.348

−0.35 -0.107+1.33
−1.39 0.0474+0.00518

−0.00517 0.681+0.0735
−0.0702 0.822

CX 4 0.314+0.0253
−0.0257 0.822+0.0537

−0.0529 0.945+0.0719
−0.0704 -1.07+0.354

−0.34 -0.0428+1.41
−1.45 0.0477+0.005

−0.00509 0.684+0.0844
−0.0823 1.01
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Figure 8. The marginalized 1D constraints on cosmological parameters for an DES like survey without priors (see Tab. 5 for exact numbers). The notation
refers to the various simulation scenarios (DM, AD, AGN, CW,CX) and the number of principal components that have been removed from the data, either
“P3” for removal of the three most significant modes or “P4” for removal of the four most significant modes.
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Figure 9. Cosmological constraints for a LSST/Euclid survey when using the PCA mitigation technique. The results shown assume that the baryonic physics
of the Universe follows the AGN scenario (i.e. the most extreme baryonic scenario). We remove three and four PC modes (blue/dashedandgreen/long-dashed,
respectively) and compare the results to the untreated AGN scenario (red/dashed) and to a pure DM scenario (black/solid).

pone a more thorough study of the cosmological parameter space
degeneracies to a future paper.

6 GENERALITY AND DISCUSSION OF THE METHOD

The PCA mitigation technique introduced in Sect. 2.2 is completely
general and can be applied to any quantity that enters a likelihood
analysis and any (combinations of) systematic(s) that affect said
quantity. In this section we formalize and discuss a generalPCA
marginalization scheme; the main differences to the method out-
lined in Sect. 2.2 are that we require the method to be (i) agnostic
about the DM scenario (ii) account for multiple systematics, (iii)
account for correlation and different errors of observables, and (iv)
to be able to process prior information on a systematics scenario
(e.g., the AGN scenario being more likely to resemble the true bary-
onic physics compare to the AD scenario).

The first requirement is motivated by the fact that even if one
can reference to a DM power spectrum, non-linear density evolu-
tion models of the DM power spectrum itself are affected by uncer-
tainties that need to be marginalized over. For example, even the lat-

est Coyote Universe emulator Heitmann et al. (2014) has up to5%
uncertainties in the DM power spectrum and Eifler (2011) showed
that this can substantially impact weak lensing observables. The
CosmoLikeweak lensing module employed in this paper (i.e., Taka-
hashi et al. 2012, with a modification to include time-dependent
dark energy models) is likely to exceed the 5% uncertainty thresh-
old at smallk-modes. This uncertainty should be accounted for,
hence we conclude that referencing to the (weighted) mean ofall
models is a more objective choice.

Consequentially, we define the components of the difference
matrix not with respect to a DM scenario (as in Eq. 4) but to the
mean of all models

∆kα = Mkα − M̄k with M̄k =
1

Nsce− 1

Nsce∑

α

Mkα . (24)

wherek again labels the model vector bin in (l, z), andα refers to
the various systematic scenarios.

The difference matrix is again computed at every point of the
MCMC and theMα’s resemble uncertainties from systematics at
any given point in cosmology, i.e.M(pnu|pco). In order to account
for requirement (iii) and (iv) we have to modify theM(pnu|pco) and
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Table 6. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
LSST/Euclid survey (no priors). The last column contains the∆χ2 distance (see Eq. 22) between best fit and fiducial parameter point.

Scenario PCA order Ωm σ8 ns w0 wa Ωb h0 ∆χ2

DM 0 0.315+0.00982
−0.00996 0.829+0.00894

−0.0087 0.961+0.00784
−0.0078 -0.994+0.0936

−0.0943 -0.0456+0.318
−0.326 0.0475+0.00483

−0.00484 0.668+0.0274
−0.0276 0.33

AD 0 0.29+0.00998
−0.00988 0.857+0.00959

−0.00939 0.931+0.00816
−0.00863 -1.18+0.0951

−0.0951 0.7+0.27
−0.26 0.0473+0.005

−0.00494 0.742+0.0378
−0.038 55.8

AD 3 0.319+0.00989
−0.00853 0.818+0.0117

−0.0116 0.937+0.0473
−0.0521 -0.948+0.112

−0.101 -0.247+0.396
−0.434 0.0476+0.0047

−0.00482 0.679+0.0454
−0.0454 1.58

AD 4 0.315+0.0119
−0.0128 0.826+0.0204

−0.0196 0.936+0.0474
−0.053 -0.992+0.13

−0.14 -0.0335+0.555
−0.503 0.0473+0.00454

−0.00461 0.689+0.0504
−0.0466 2.27

AGN 0 0.242+0.00658
−0.00778 0.888+0.00995

−0.00865 0.846+0.00331
−0.00608 -1.48+0.0782

−0.0854 1.27+0.29
−0.264 0.042+0.00165

−0.00163 0.852+0.0347
−0.0264 142

AGN 3 0.315+0.00858
−0.00887 0.825+0.0103

−0.0105 0.939+0.0411
−0.0432 -1.03+0.0927

−0.094 0.0973+0.362
−0.349 0.0471+0.00476

−0.00484 0.686+0.042
−0.0397 3.55

AGN 4 0.317+0.0103
−0.0104 0.823+0.017

−0.0173 0.947+0.041
−0.0411 -1+0.111

−0.107 -0.0593+0.449
−0.446 0.0483+0.00425

−0.0045 0.681+0.0408
−0.0408 4.85

CW 0 0.364+0.0126
−0.0116 0.78+0.00864

−0.00956 1.02+0.0092
−0.00794 -0.597+0.125

−0.12 -1.64+0.429
−0.481 0.0474+0.00495

−0.00502 0.552+0.0201
−0.0243 71.5

CW 3 0.315+0.00958
−0.00924 0.828+0.0116

−0.0115 0.947+0.0429
−0.045 -0.989+0.105

−0.1 0.00541+0.401
−0.422 0.0476+0.0047

−0.00483 0.679+0.0457
−0.0411 0.219

CW 4 0.315+0.00977
−0.00952 0.83+0.017

−0.0174 0.962+0.0502
−0.0506 -0.989+0.105

−0.103 -0.0353+0.42
−0.443 0.0478+0.00463

−0.0048 0.668+0.0403
−0.0385 0.651

CX 0 0.431+0.0159
−0.00892 0.724+0.00385

−0.00891 1.01+0.00878
−0.00765 -0.316+0.102

−0.0458 -2.3+0.0701
−0.182 0.0473+0.0049

−0.00491 0.472+0.0112
−0.024 86.9

CX 3 0.318+0.00995
−0.01 0.818+0.0121

−0.0119 0.931+0.0405
−0.0447 -0.974+0.116

−0.116 -0.215+0.472
−0.489 0.0483+0.00461

−0.00492 0.692+0.0492
−0.0448 3.69

CX 4 0.321+0.0104
−0.0103 0.812+0.0154

−0.0155 0.917+0.0436
−0.0459 -0.936+0.117

−0.118 -0.322+0.465
−0.453 0.0477+0.00448

−0.00468 0.692+0.0416
−0.0419 4.11
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Figure 10. The marginalized 1D constraints on cosmological parameters for an LSST like survey without priors (see Tab. 6 for exact numbers). The notation
refers to the various simulation scenarios (DM, AD, AGN, CW,CX) and the number of principal components that have been removed from the data, either
“P3” for removal of the three most significant modes or “P4” for removal of the four most significant modes.
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Table 7. Projection angle of the dark matter difference vectors onto the PCs (see Eq. 20) and fraction of the difference vector contained by the PC subspace
(see Eq. 21). Results shown are for the DES case.

Cosmology | cosθ1| V1 | cosθ2| V2 | cosθ3| V3 | cosθ4| V4

Ωm =0.313+0.0341
−0.0395 0.32 0.32 0.45 0.55 0.017 0.55 0.22 0.6

σ8 =0.83+0.0335
−0.0318 0.18 0.18 0.49 0.52 0.14 0.54 0.2 0.58

ns =0.964+0.033
−0.0337 0.26 0.26 0.55 0.61 0.5 0.79 0.044 0.79

w0 =-0.972+0.353
−0.532 0.14 0.14 0.61 0.62 0.28 0.68 0.14 0.7

wa =0.372+1.55
−1.18 0.22 0.22 0.61 0.65 0.3 0.72 0.14 0.73

Ωb =0.041+0.0116
−0.00131 0.36 0.36 0.38 0.53 0.52 0.74 0.029 0.75

h0 =0.672+0.0974
−0.0575 0.37 0.37 0.41 0.55 0.52 0.76 0.043 0.76

Table 8. Projection angle of the dark matter difference vectors onto the PCs (see Eq. 20) and fraction of the difference vector contained by the PC subspace
(see Eq. 21). Results shown are for the LSST/Euclid case.

Cosmology | cosθ1| V1 | cosθ2| V2 | cosθ3| V3 | cosθ4| V4

Ωm =0.315+0.0102
−0.00961 0.099 0.099 0.59 0.59 0.32 0.67 0.13 0.69

σ8 = 0.829+0.00901
−0.00862 0.15 0.15 0.49 0.51 0.15 0.53 0.28 0.6

ns =0.961+0.00771
−0.00793 0.13 0.13 0.063 0.15 0.15 0.21 0.4 0.45

w0 =-1.01+0.11
−0.0776 0.14 0.14 0.37 0.4 0.081 0.41 0.32 0.52

wa =0.0402+0.232
−0.412 0.14 0.14 0.44 0.46 0.12 0.48 0.19 0.52

Ωb =0.0486+0.00374
−0.00593 0.13 0.13 0.054 0.14 0.26 0.3 0.43 0.52

h0 =0.673+0.0232
−0.0319 0.13 0.13 0.038 0.14 0.24 0.28 0.43 0.51

define theMα’s as

Mα = wα L M(pnu|pco) (25)

where thewα’s allow the analyst to weigh the different nuisance
parameter scenarios relative to each other andL is computed from
the inverse data covariance matrixC−1 = LLt in order to account
for correlation and different error bars of data points. We note that
strictly speaking the covariance is a function ofpnu andpco and that
this dependency should be incorporated in a high precision analy-
sis.

In order to fulfill requirement (ii), it must be possible to com-
pute the effect of the systematic under a wide range of possible
circumstances. This computation involves information from obser-
vations, simulations and theoretical considerations; it is necessary
for our calculations to span the range of reasonable realizations of
the systematic effect. PCA mitigation does not eliminate the need
to produce simulations of the systematics that one aims to remove.
The procedure also requires that the systematic not be largely de-
generate with the parameters we aim to infer from the data; how-
ever, this same requirement must be met for more commonplace
“self-calibration” exercises to be effective (e.g., such as Huterer
et al. 2006; Zentner, Rudd & Hu 2008; Bernstein 2009; Semboloni,
Hoekstra & Schaye 2013; Zentner et al. 2013).

There are substantial advantages of this technique over other
nuisance parameter approaches. First and foremost, the process is
bound to effectively incorporate degeneracies between models of
systematic uncertainties. This is not true if independently devel-
oped nuisance parameter models, e.g., baryons as in Zentneret al.
(2013) and intrinsic alignment as in Joachimi et al. (2011) are
combined in an analysis. Second, if systematics can be calibrated
against dark matter only simulation, this procedure enables one to
perform a cosmological analysis using phenomenological models
that require relatively little computational effort. This advantage
should not be underestimated. The computational expense ofe.g.,

explicitly including baryonic effects in simulations for a wide range
of cosmological models, is so prohibitive as to be entirely infeasi-
ble. Third, the technique to remove contaminated modes substan-
tially reduces the dimensionality of the parameter space that needs
to be sampled. Instead of sampling a high-dimensional nuisance
parameter space at every step of the MCMC, mode removal allows
the analyst to sample cosmological parameters only.

In the presence of strong degeneracies between PCs and cos-
mology the mode removal technique might need to be replaced by
marginalizing over the PCs with priors (recall that mode removal is
equivalent to marginalizing without priors). This changesthe for-
malism outlined in Sect. 2.2. Instead of removing the contaminated
modes as in Eq. (8) we have to carry out a full marginalizationin
PC space.

Defining data and model vector and covariance in the nuisance
parameter sensitive PC space, i.e.Dpc = UtD, Mpc = UtM, and
C−1

pc = UtC−1U, we can define the marginalization integral that
needs to be solved/computed at every step of the MCMC as

L(D|pco) =

∫

dnpci Pr(pci) (26)

× exp
(

−
1
2

[

(Dpc −Mpc)
tC−1

pc(Dpc −Mpc)
])

,

wherePr(pci) accounts for prior information on thei-th PC. Such
information can be obtained from the eigenvalues of the covariance
matrix in Eq. (6) or from the so-calledsignalsof the extremeMα’s,
i.e. their projection onto the PC’s. These extreme signals can serve
as upper and lower integration limit of the marginalizationintegral.

We note however that even in this scenario the PC mitiga-
tion technique has substantial advantages: (i) the degeneracy be-
tween nuisance parameters is automatically accounted for and (ii)
the number of nuisance parameters and hence the dimensionality
of the integral is greatly reduced.
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7 CONCLUSIONS

We analyze cosmic shear tomography power spectra obtained from
14 hydro-simulations with different underlying baryonic processes
(e.g., AGN feedback, SN feedback, different cooling mechanisms,
and combinations thereof). These simulations span the range of
modeling uncertainties in the matter density field which, ifnot ac-
counted for, severely impact cosmological constraints.

Using the covariance and weak lensing module of the Cosmo-
Like analysis framework, we simulate Stage III (DES) and Stage
IV (LSST/Euclid) likelihood analyses for each of the 14 scenar-
ios. The quantity of interest is the bias in the inferred parameter
(e.g.,w0, wa, σ8) caused by baryonic effects compared to the sta-
tistical uncertainties in the inferred parameter. In agreement with
previous, similar analyses (e.g., Semboloni et al. 2011; Semboloni,
Hoekstra & Schaye 2013; Zentner et al. 2013), we find severe bi-
ases in cosmological constraints inferred from cosmic shear mea-
surements of DESif the true Universe is described by one of the
extreme baryonic scenariosand baryonic effects are neglected in
the analysis. For scenarios that differ only slightly from a pure DM
Universe, such as the adiabatic (AD) scenario the bias is substan-
tially less severe (within the 68% region) but still non-negligible.
Unfortunately, detailed studies of the OWLS simulations analyzed
here suggest that some of the more extreme scenarios best describe
observed galaxy properties (e.g., McCarthy et al. 2010).

The Stage IV experiments LSST and Euclid will measure cos-
mic shear spectra with smaller statistical error bars and sothe re-
quirement to reduce systematics is significantly more stringent than
for DES. In our analyses in which we use baryonic simulations
to simulate an observed LSST/Euclid cosmic shear data set, but
do not account for baryonic effects, the systematic errors on in-
ferred cosmological parameters are always severe. In theseanal-
yses, biases in dark energy equation of state parameters could be
as large as∼ 7σ, while biases in other parameters could be even
larger. In the AD scenario, in which the baryons are treated non-
radiatively and in which the alterations of cosmic shear spectra are
mild, our analysis that does not include specific mitigationof bary-
onic effects rejected the true, fiducial cosmology at greater than the
α = 99.9999999% confidence interval. When analyzing the AGN
scenario for an LSST/Euclid survey the rejection probability of the
fiducial cosmology is off the charts. We repeat all likelihood anal-
yses including prior information from the Planck mission and find
no qualitative change in the severity of the effect (see Appendix A).
There is no doubt then that a mitigation scheme will be necessary
to analyze both Stage III and certainly Stage IV data.

As a potential remedy we present PCA marginalization which
aims to mitigate biases on parameters inferred from observables
that may be partly compromised by poorly-understood systematic
errors. The technique consists of: (i) identifying a range of possible
effects that the systematic may have on the observable of interest;
(ii) determining linear combinations of observables, using a prin-
cipal component analysis, that are most compromised by the sys-
tematic according to the templates identified in step (i); projecting
the data onto a subspace that removes the linear combinations of
observables that are most affected by the systematic; and (iii) per-
forming a likelihood analysis on this data subspace.

We apply PCA marginalization to the simulation data and re-
peat the likelihood analyses for all baryonic scenarios. Wefind that
removing 3-4 principal components is sufficient to account fully for
biases from baryonic physics, even for the most extreme baryonic
scenarios, and even for the Stage IV LSST/Euclid surveys. This is
a clear improvement over phenomenological models (as in Zentner

et al. 2013; Semboloni, Hoekstra & Schaye 2013), which remove
biases from baryonic physics for Stage III, but leave significant sys-
tematic error in the inferred cosmological parameters fromStage
IV experiments.

As a consequence of the PCA mode removal, our constraining
power on cosmology is only slightly reduced, with only the con-
straints on the spectral indexns noticeably degraded. Even this loss
in cosmological information is recaptured if Planck priorsare in-
cluded. Accounting for both the statistical and systematicerrors on
inferred cosmological parameters (such asw0 andwa), it is clear
that mitigation is strongly preferred over neglecting baryonic pro-
cesses. For example, in the LSST/Euclid AGN scenario in which
the baryonic systematic is not explicitly mitigated, the systematic
error onw0 is δw0 ≈ 0.5, while the statistical error isσ(w0) ≈ 0.08
(see Table 6). Upon applying PCA mitigation to this scenarioand
removing the three most important modes, the systematic error is
reduced toδw0 ≈ 0.03 and the statistical error increased to only
σ(w0) ≈ 0.09.

It is our hope that these techniques will be adopted and applied
to mitigate systematic errors, not only in cosmic shear cosmology,
but in a variety of future data analyses.
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APPENDIX A: RESULTS WITH PLANCK PRIORS

In this appendix we repeat all likelihood analysis described in
the text but include external information from the Planck satel-
lite (Planck Collaboration et al. 2013). There are good reasons to
look at the no-prior likelihoods first. Before combining results, we
would need to see whether they are consistent, and – were baryons
neglected – the Planck results would not be consistent with the lens-
ing results. There is also the danger that including external results
would force the likelihood to the correct region, thereby understat-
ing the magnitude of the problem and the need to fix it.

The analysis methods used in this appendix are exactly the
same as in the main text; the results are described in Sect. 5.2.
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Figure A1. Cosmo-
logical constraints
for a DES survey
assuming different
underlying bary-
onic scenarios for
our Universe, i.e.
pure dark mat-
ter (black, solid),
strong AGN feed-
back (red, dashed),
extreme cooling
(blue, dot-dashed),
and moderate
cooling (green,
long-dashed). The
scenarios are de-
tailed in Sect. 3.1.
Results shown here
include priors front
the Planck mission.
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Figure A2. Cosmo-
logical constraints
for a DES survey
with Planck priors
when using the
PCA mitigation
technique. The re-
sults shown assume
that the baryonic
physics of the Uni-
verse follows the
AGN scenario (i.e.
the most extreme
baryonic scenario).
We remove three
and four PC modes
(blue/dashed and
green/long-dashed,
respectively) and
compare the results
to the untreated
AGN scenario
(red/dashed) and to
a pure DM scenario
(black/solid).
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Table A1. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
DES survey (with Planck priors). The last column contains the∆χ2 distance (see Eq. 22) between best fit and fiducial parameter point.

Scenario PCA order Ωm σ8 ns w0 wa Ωb h0 ∆χ2

DM 0 0.315+0.00856
−0.00862 0.828+0.0104

−0.0103 0.961+0.00687
−0.00686 -0.999+0.24

−0.24 -0.0836+0.974
−0.995 0.0487+0.000602

−0.000607 0.673+0.0118
−0.0116 0.0428

AD 0 0.308+0.00815
−0.00819 0.83+0.0105

−0.0104 0.958+0.00695
−0.00705 -0.974+0.226

−0.223 -0.528+0.98
−1.04 0.0487+0.000617

−0.000616 0.673+0.0118
−0.0117 2.82

AD 3 0.313+0.00872
−0.00886 0.827+0.0109

−0.0109 0.96+0.00712
−0.00702 -1.05+0.22

−0.221 0.0795+0.647
−0.642 0.0487+0.00063

−0.000635 0.672+0.0107
−0.0107 0.148

AD 4 0.314+0.0108
−0.0107 0.828+0.0106

−0.0108 0.96+0.00687
−0.0069 -1.03+0.249

−0.251 0.0335+0.702
−0.703 0.0487+0.000628

−0.000629 0.673+0.0107
−0.0107 0.258

AGN 0 0.274+0.00791
−0.00844 0.825+0.00975

−0.00967 0.949+0.0068
−0.00674 -1.29+0.229

−0.228 -1.22+1.07
−0.988 0.0486+0.000614

−0.000623 0.671+0.012
−0.0118 60.5

AGN 3 0.316+0.0107
−0.0108 0.827+0.0109

−0.0109 0.96+0.00712
−0.00701 -1.01+0.255

−0.258 -0.0336+0.794
−0.78 0.0487+0.000623

−0.00062 0.674+0.0114
−0.0112 0.797

AGN 4 0.315+0.0102
−0.0102 0.828+0.0107

−0.0107 0.96+0.00699
−0.00708 -1.03+0.255

−0.257 0.108+0.708
−0.703 0.0487+0.000611

−0.000614 0.673+0.0103
−0.0105 0.538

CW 0 0.326+0.00882
−0.00874 0.822+0.00994

−0.00988 0.966+0.00702
−0.00698 -1.05+0.236

−0.243 0.504+0.95
−0.908 0.0487+0.000613

−0.000614 0.674+0.0114
−0.0113 5.28

CW 3 0.314+0.00904
−0.00917 0.828+0.0107

−0.0109 0.96+0.00699
−0.00694 -1.04+0.223

−0.222 0.0996+0.657
−0.653 0.0487+0.000612

−0.000616 0.672+0.0107
−0.011 0.115

CW 4 0.315+0.0114
−0.0115 0.828+0.0109

−0.011 0.961+0.00728
−0.0072 -1.03+0.263

−0.268 0.0669+0.769
−0.762 0.0487+0.000608

−0.000597 0.673+0.0109
−0.0112 0.1
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Figure A3. The best fit and marginalized 1D error bars on cosmological parameters for an DES survey with Planck priors (see Table A1 for exact numbers).
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Figure A4. Cosmo-
logical constraints
for a LSST/Euclid
survey assuming
different underlying
baryonic scenarios
for our Universe,
i.e. pure dark mat-
ter (black, solid),
strong AGN feed-
back (red, dashed),
extreme cooling
(blue, dot-dashed),
and moderate
cooling (green,
long-dashed). The
scenarios are de-
tailed in Sect. 3.1.
Results shown here
include priors front
the Planck mission.
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Figure A5. Cosmo-
logical constraints
for a LSST/Euclid
survey with Planck
priors when using
the PCA mitigation
technique. The re-
sults shown assume
that the baryonic
physics of the Uni-
verse follows the
AGN scenario (i.e.
the most extreme
baryonic scenario).
We remove three
and four PC modes
(blue/dashed and
green/long-dashed,
respectively) and
compare the results
to the untreated
AGN scenario
(red/dashed) and to
a pure DM scenario
(black/solid).
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Table A2. Marginalized 1D constraints on cosmological parameters for the DM, AD, AGN, CW, and CX scenario with and without the PCA mitigation for a
LSST/Euclid survey (with Planck priors). The last column contains the∆χ2 distance (see Eq. 22) between best fit and fiducial parameter point.

Scenario PCA order Ωm σ8 ns w0 wa Ωb h0 ∆χ2
BA

DM 0 0.315+0.00577
−0.00584 0.828+0.00604

−0.00591 0.96+0.00519
−0.00513 -0.993+0.0638

−0.0635 -0.0449+0.26
−0.258 0.0486+0.000608

−0.000604 0.673+0.0096
−0.0098 0.096

AD 0 0.301+0.00561
−0.00569 0.846+0.00643

−0.00629 0.944+0.0053
−0.00539 -1.04+0.0604

−0.0607 0.245+0.258
−0.259 0.0485+0.00061

−0.000591 0.683+0.0103
−0.0103 60.7

AD 3 0.315+0.00506
−0.00506 0.826+0.0064

−0.00638 0.96+0.00623
−0.00645 -0.997+0.0608

−0.0622 -0.111+0.216
−0.224 0.0487+0.000624

−0.000621 0.671+0.00911
−0.00924 2.66

AD 4 0.315+0.00474
−0.00482 0.828+0.00712

−0.00668 0.96+0.00636
−0.00656 -1+0.0651

−0.0591 -0.0452+0.204
−0.202 0.0486+0.000624

−6e−04 0.673+0.00977
−0.00932 0.643

AGN 0 0.279+0.00559
−0.00585 0.845+0.00808

−0.00812 0.878+0.00433
−0.00775 -1.02+0.0905

−0.0879 -0.4+0.517
−0.53 0.0478+0.000686

−0.000624 0.702+0.0128
−0.00988 207

AGN 3 0.315+0.00517
−0.0051 0.827+0.00626

−0.00635 0.96+0.00619
−0.00646 -1.04+0.0631

−0.0625 0.0715+0.222
−0.206 0.0487+0.000623

−0.000613 0.674+0.00891
−0.00899 2.85

AGN 4 0.315+0.00479
−0.00505 0.827+0.00745

−0.0072 0.961+0.00638
−0.00656 -1.04+0.0658

−0.0663 0.0446+0.216
−0.207 0.0487+0.000605

−0.000623 0.674+0.00937
−0.00938 6.6

CW 0 0.341+0.00694
−0.00671 0.797+0.00594

−0.00629 0.989+0.00577
−0.00512 -0.924+0.074

−0.0757 -0.477+0.304
−0.298 0.049+0.000634

−0.000633 0.652+0.0107
−0.0113 75.1

CW 3 0.315+0.00477
−0.00469 0.829+0.00629

−0.00631 0.96+0.00655
−0.00656 -0.995+0.0559

−0.0561 9.19e-05+0.203
−0.202 0.0487+0.000608

−0.000604 0.672+0.00885
−0.00881 1.64

CW 4 0.315+0.00477
−0.00477 0.829+0.00728

−0.00717 0.96+0.00643
−0.0064 -0.994+0.0564

−0.0573 -0.0112+0.203
−0.199 0.0487+0.00061

−0.000604 0.672+0.00927
−0.00942 0.244

CX 0 0.36+0.00885
−0.00793 0.762+0.00607

−0.00731 0.99+0.00549
−0.00481 -0.95+0.0995

−0.0982 -0.806+0.368
−0.368 0.0492+0.000647

−0.000625 0.624+0.0107
−0.0125 154

CX 3 0.315+0.00486
−0.00476 0.824+0.00605

−0.00612 0.96+0.00664
−0.00663 -1.01+0.0599

−0.0601 -0.148+0.215
−0.22 0.0487+0.000609

−0.000601 0.672+0.00896
−0.0091 2.22

CX 4 0.316+0.00507
−0.00507 0.825+0.00672

−0.00687 0.959+0.0068
−0.00681 -1.01+0.0635

−0.0639 -0.0895+0.21
−0.213 0.0487+0.000596

−0.000605 0.673+0.00947
−0.00931 6.82
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Figure A6. The best fit value and marginalized 1D error bars on cosmological parameters for an LSST/Euclid survey with Planck priors (see Tables A2 for
exact numbers).
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